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INVESTIGATION OF NEW RADAR-DATA-REDUCTION TECHNIQUES

USED TO DETERMINE DRAG CHARACTERISTICS OF

A FREE-FLIGHT VEHICLE

By Gerard E. Woodbury and John W. Wallace

Langley Research Center

SUMMARY

An investigation was conducted of new techniques used to determine the complete

transonic drag characteristics of a series of free-flight drop-test models from principally

radar tracking data. In addition to fully using the capabilities of both the tracking radars

and the meteorological measurement systems, preflight trajectory design, exact kine-

matic equations, and visual-analytical filtering techniques were employed in the study.

The results of this endeavor were compared with the results obtained from analysis of

the onboard, accelerometer and pressure sensor data of the only drop-test model that

was instrumented.

The accelerometer drag curve was approximated by the radar-data-alone drag

curve. However, white noise in the radar data prevents a precise definition of the drag

rise. As a backup method, on the other hand, the radar-data-alone approach has con-

siderable merit for estimating drag rise, particularly if subsonic wind-tunnel data are

coupled with the flight data.

INTRODUCTION

A series of free-flight drop tests was conducted by the NASA Langley Research

Center to determine the transonic drag characteristics of a low-drag supercritical body

of revolution. The drop-test series consisted of three uninstrumented models and one

instrumented model. The instrumented model contained longitudinal accelerometers and

various pressure sensors. These instruments were the primary source of data for the

determination of the drag of the test configuration. The free-flight drag characteristics

obtained from analysis of these data are presented in reference 1.

In the planning stages of the test program, meanwhile, it was felt that while the

instrumented model was being readied, three uninstrumented models could be quickly

constructed, aircraft dropped, and tracked by radars. By using the radar-data reduction

methods of the past, these uninstrumented drop tests could provide a quick look at the



free-flight subsonic and supersonic levels of drag. The tests could also help perfect the

aircraft-drop and radar-tracking techniques; furthermore, in the event of a malfunction

of the instrumented model, they could also possibly serve as a backup for the determina-

tion of the drag rise. It was later decided to explore this latter possibility more thor-

oughly when, as a result of a stringent accuracy requirement placed on the test series,

much emphasis was put on using the full capabilities of the tracking radars and the

meteorological measurement systems. This emphasis coincidentally increased the

chances of successfully determining the complete transonic drag characteristics of the

model from radar data alone.

The purpose of this report is to present the new techniques devised for this effort

and the results of the application of these techniques to the radar data of the drop-test

series. The approach taken in this work involved: (1) updating the equations for deter-

mining the drag from good approximations to more exact expressions written in a form

conducive to accurate smoothing of the data, (2) using a smoothing technique new to this

field of endeavor and using it in conjunction with a visual display in order to assure phys-

ical relevance, (3) designing the flight trajectory to maximize the contribution of data

known to be the most accurate, and (4) employing the most recently developed meteoro-

logical measurement systems.

SYMBOLS

D
CD drag force coefficient, q,S

CT total aerodynamic force coefficient; for small angles of attack CT CD = CX

CX  axial-force coefficient

db base diameter of flight vehicle, cm

dmax maximum diameter of flight vehicle, cm

D drag force, N

F (O)I total aerodynamic force relative to Earth-centered inertial axis system,
N (see ref. 2)

g sea-level acceleration of gravity, m/sec2

h geodetic height of flight vehicle, m
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m mass of flight vehicle, kg

M Mach number

q, free-stream dynamic pressure, N/m 2

R flat-Earth horizontal range, m

S reference area, m2

t elapsed flight time, sec

Vc atmospheric speed of sound, m/sec

VE magnitude of Earth-relative velocity of flight vehicle, m/sec

V magnitude of wind velocity, m/sec

V00  magnitude of free-stream velocity of flight vehicle, m/sec

W weight of flight vehicle, mg, N

x north-south component of R, m

y east-west component of R, m

YE,p Earth-relative flight-path angle in vertical plane, deg

YE, y Earth-relative flight-path angle in horizontal plane, deg

71 total angle of attack, deg

0 elevation angle measured by radar above its horizontal plane, degr

p slant range measured by radar in line of sight to flight vehicle, m

rate of change of slant range, m/sec
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PD p measured directly by the radar operating in Doppler mode, m/sec

p free-stream density of atmosphere, kg/m 3

V/r azimuth angle measured from north by radar in its horizontal plane, deg

pw wind azimuth, referenced to north, deg

A dot over a symbol denotes differentiation with respect to time; a double dot over

a symbol denotes a second differentiation with respect to time.

ANALYTICAL METHODS

General

A review of the method typically used in the past for obtaining CD from radar

data alone was made. It was found that this technique had been devised in the days before

high-speed computers and was initially set up to be done primarily by hand and had nec-

essarily used many simplifying assumptions. These assumptions are presented in

appendix A together with the equations based on them for determining CD. Although

most of the handwork was in time eliminated from the past method by one means or

another, its equations changed little or not at all. Because of a stringent accuracy

requirement, preflight calculations were made to check the accuracy of the equations

when applied to this particular test series. Using the drag-force equation (Al) with a

computer-generated nominal trajectory of the test configuration, a 3-percent error in

CD was found in the test region of interest. Thus, it was deemed necessary to devise

new formulations which are physically more exact than the old ones and to make use of

the latest technology and equipment. The new radar-data-reduction technique presented

herein employs a computerized curve-fitting program new to this work in its filtering

process and uses it in conjunction with a control console. This arrangement permits, in

all phases of the filtering, visual inspection of the smoothed and differentiated data;

through direct access to the computer program, it also provides a more expeditious

means of managing the data.

The equations for computing position, velocity, and acceleration are written in an

oblate-spheroidal Earth-centered inertial frame. In addition to being more exact, these

equations were specifically tailored so that the basic radar measurements (p, r,0r,1D'
their time rate of change, and where applicable their second time rate of change would

be input directly to determine CD. This approach enables due regard to be given to

the relative accuracy of each measurement by assuring that very accurate data would

not be degraded by less accurate data in the filtering process.
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Hand-Calculation Method

For convenience, the past method may also be referred to as the hand-calculation

method. No one reference could be found which satisfactorily gave a complete descrip-

tion of its original formulation. A version of it was reconstructed, however, and is pre-

sented in appendix A along with its basic assumptions and equations. Basically, two

radars were involved in the test setup. A continuous-wave Doppler radar positioned

within a short distance of the launching site measured pD, the rate of change of slant

range to the model. A remote second radar of a positional nature provided the spa-

tial location of the model in spherical coordinates (p,14pr,r). (Today's FPQ-6 radar

combines both of these modes of tracking in one facility.) In general, there were two

methods of launching the flight models: by rocket propulsion and by a helium gun. As

the latter name implies, small models were accelerated to low supersonic speed by a

controlled expansion of the gas (helium) acting on a push-plate within a 6-inch rifle bar-

rel. The determination of the transonic drag variation was made for both launch modes

in coasting flights as the models decelerated from low supersonic to high subsonic

speeds.

The hand-calculation method is still applicable today. It yields its best results

when applied to flight tests wherein large drag forces overshadow those forces neglected

by the simplifying assumptions of the method. It was the neglect of the Coriolis force

which, in fact, led to the aforementioned 3-percent error in CD of the low drag bodies

of this test series. The hand-calculation method could be particularly useful to those

who are without sophisticated software and who are not laboring under the constraint of

extreme accuracy as herein was the case. The hand-calculation method was updated

from time to time primarily to eliminate its handwork and to adapt it to other modes of

free-flight testing. The results of its application over the years to many flight test mod-

els are summarized in reference 3.

New Filtering and Data-Reduction Method

A block diagram summarizing the new procedures employed in the analysis of the

flight data is shown in figure 1. The data are first smoothed (filtered) by a cubic spline

approximation computer program (ref. 4) utilizing a cathode-ray tube console (CSA/CRT).

On the console, the data are visually presented and checked for wild points, dropouts,

and any other data anomalies. The data are then fitted to cubic equations (splines)

between finite boundaries (knots). The degree to which the fit approximates the data is

also checked visually on the console. The obvious advantage of this technique is that

engineering judgment based on experience may be exercised at this point, and if not

satisfied, iterations may be performed varying the number of splines and location of

knots. The fitting equations are constrained such that the function, its first derivative,
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DRAG COEFFICIENT WITH MACH NUMBER

ACCELEROMETER

C D vs M - COMPARE (REF. 1)
C sCD MS M

Figure 1.- Block diagram illustrating the flow of raw data to reduced coefficients.



and second derivative must be continuous at the boundaries. The first and second deriv-

atives of the function (data) fitted by cubic equations, naturally, take the form of quad-

ratic and linear equations, respectively. Thus, it was not surprising to find that while

the derivatives were continuous at each knot, the derivative time histories were not nec-

essarily smooth in appearance overall. This was particularly true of the second deriva-

tives. For that reason, the internally computed first derivatives were also fitted and

new first and second derivatives were obtained which were more accurate and less erratic.

The effect of this successive smoothing procedure on the data and its initial first and

second derivatives is illustrated more thoroughly later.

All of the equations for determining CD from radar data alone were incorporated

into a second computer program which is hereinafter referred to as RADFAST and are

presented in appendix B. The output of the CSA/CRT program takes the form of coeffi-

cients of the cubic equations. This output then serves as input to RADFAST where the

coefficients are used to generate time histories of the nine quantities (p, Ir' r, and

their first and second derivatives) that are required by the kinematic equations of

RADFAST in order to determine displacements, velocities, and accelerations in an iner-

tial axis system set in the center of a rotating oblate spheroid. The important output

from the computations of the kinematic equations (eqs. (Bl) to (B38) in appendix B) are:

(1) Geodetic altitude (eq. (B28)) is required to relate environmental parameters to

the flight trajectory.

(2) Free-stream velocity (eq. (B36)) is obtained by adding the wind velocity vectori-

ally to the Earth-relative velocity.

(3) Total inertial acceleration (eq. (B19)) is required in the determination of the

total aerodynamic force acting on the body.

The total aerodynamic force of the body is computed by the product of the mass of

the body and the total aerodynamic acceleration in equation (B43) wherein the gravita-

tional acceleration-of the body is subtracted vectorially from the total inertial accelera-

tion determined from radar data. The total aerodynamic force coefficient of the body is

computed by

CT = qS

where q0 1 PoV 2. The results of preflight studies presented in appendix C indicated

that the model could be expected to fly at very small angles of attack (7 0) during the

-data period. Thus

CD " CT
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Finally, with M found by

V 0M=V
Vc

the variation of CD with M may be determined.

APPLICATION OF TECHNIQUES TO FLIGHT TESTS

The flight test series was conducted at the NASA Wallops Flight Center. The

CSA-RADFAST techniques described in the previous section were applied to the radar

flight data of three of the models of the drop-test series. Although each of the three unin-

strumented models (designated R1, R2, and R3) and the instrumented model (R4) were

successfully dropped and radar tracked, the FPQ-6 radar was not able to obtain any

Doppler data during the flight of the second model, R2. Consequently, because of the

incompleteness of the data, the CSA-RADFAST techniques were not applied to the R2

flight. Since the tests were largely repetitious in nature, the atmospheric and radar

flight data of only one model are presented herein and may be thought of as being typical

of that of the three models analyzed.

Test Models

The four test models were bodies of revolution with identical exterior contours and

were designed to have a drag divergence near Mach 1. A sketch of the model is shown in

figure 2. A photograph of the model mounted on the drop aircraft is shown in figure 3.

The model length was 114.3 cm and the maximum diameter was 12.7 cm. The fins were

swept 450 and had biconvex cross section with a thickness-to-chord ratio of 0.03. The

models were mass balanced to zero, within the tolerance of the balance machine. Each

model had a mass of approximately 36.4 kg and contained a beacon to aid in radar acqui-

sition and tracking.

Test Description

In each flight test the model was dropped from a T-33 aircraft flying horizontally

with a nominal altitude of 9144 m and Earth-relative velocity of approximately 183 m/sec.

The trajectory was directed at the Wallops FPQ-6 radar such that pD, the only velocity

component measured directly and, hence, the most accurate component of the total veloc-

ity, was maximized. For the same reason the line of sight from the radar was designed

to be tangent to the flight path at a point in time when M = 1. This design condition was

not met in the actual flight tests because of Wallops range safety limits. For example,

in the actual flight test of R4 at M = 1 the flight-path angle yE was approximately

-610 while the radar elevation look angle Or was approximately 200.
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Figure 2.- Sketch of drop-test model. Dimensions are in centimeters.



L-74-1142

Figure 3.- Photograph of flight vehicle on the launch aircraft.
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Atmospheric Properties

Measurements of free-stream temperature, pressure, and relative humidity were

made by rawinsondes for each flight. Free-stream density and speed of sound were

derived from these measurements. The measured and subsequently derived atmospheric

quantities of the R4 flight are presented in figure 4. The winds were measured by the

Jimsphere technique (ref. 5). Briefly, the Jimsphere technique is a method developed

for measuring winds which employs precise radar tracking of a smooth, superpressure,

spherical balloon modified by the addition of conical surface-roughness elements. The

winds are averaged over intervals of 25 m as opposed to approximately 300 m as is done

in the commonly used radiosonde system.

Test Data

The radar data (P, rrYOD) measured during the flight of R4 is presented in

figure 5. Superimposed on the data is the smoothing of data by the CSA/CRT technique.

Using the coefficients of the cubic equations fitted to the data in a least-square sense,

the first and second derivatives of the 4 r and 0r data were generated and are pre-

sented in figures 6 and 7, respectively. The 0 r plots are particularly illustrative

of the need for the aforementioned successive smoothing. Its second derivative Wr
clearly shows in figure 7 that while the derivatives are continuous at each knot, their

overall time history is oscillatory in nature, apparently about some mean. The dashed

curves (figs. 6 and 7) represent the new first and second derivatives obtained by fitting

new sets of cubic equations to the initial internally generated first derivatives of the /r
and Br data. Notice that this procedure does not appreciably change the general value

of the original first derivatives but does considerably alter the time history of the second

derivative to a more plausible curve. The successive smoothing procedure was only

required for the V/ r and 0
r data since the first derivative of p is measured directly

by the radar and is the so-called Doppler velocity pD'

RESULTS OF APPLICATION

The results of applying the CSA-RADFAST method to the radar flight data'of the

test models were obtained and then compared with the results of the analysis (ref. 1) of

the accelerometer and pressure sensor data of the instrumented flight model, R4. The

two sets of R4 results are of particular interest, for here usinfg different types of data

from the same flight (a flight in which the model obviously flew the same trajectory,

encountered the same winds, etc.) it was possible to make a one-to-one comparison of

their resultant drag variations.
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Figure 4.- Meteorological data.
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CSA-RADFAST Method Results

A total axial-force coefficient CX was obtained from reference 1 by algebraically

adding the base and forebody axial-force coefficients presented therein. Then by noting

that for small angles of attack CD = CX , the drag variation used herein for comparison

purposes was realized.

The results of computing the drag coefficient versus Mach number using the pre-

viously described techniques are shown in figure 8 and are compared with the results of

reference 1. It can be seen that the results of the R1 and R3 flights are inconclusive.

They each have a drag rise at about the same Mach number as that of reference 1, but

neither approximates the drag curve of reference 1 in appearance. On the other hand,

the drag curve of R4 does approximate that of reference 1 in appearance. A small ampli-

tude perturbation on the R4 curve, however, makes it somewhat difficult to precisely

define its drag rise. It should be noted here that in this updated method no smoothing was

performed on anything but the basic radar data. The resultant R4 drag curve could have

been further smoothed using a priori knowledge of the wind-tunnel drag variation. Having

a high level of confidence in the subsonic portion of the wind-tunnel drag variation, the

perturbation in the subsonic radar drag variation would have been eliminated and the

drag rise could be easily estimated. Thus, as a backup method for determining the drag

rise, the radar-data-alone approach has considerable merit.

Additional Comparison

Independently of the techniques reported herein, an investigation was made by the

NASA Wallops Flight Center of a Kalman Filter computer program (KAPPA) applied to

radar tracking data for the purpose of estimating errors in aircraft and missile trajec-

tories (ref. 6). One set of tracking data used in that study was, again, that of R4. In the

reference, R4 is designated Supercritical Body No. 3. The only result presented therein

is a plot showing a variation of drag acceleration with Earth-relative velocity. In order

to be able to time correlate that result with the CSA-RADFAST results, time histories of

trajectory parameters were obtained from Wallops via private communication. A com-

parison between the trajectory results of the two programs is shown in figure 9. It can

be seen that there is very good agreement between the CSA-RADFAST and KAPPA posi-

tion and velocity results. Since the model is one and the same, it was possible to vecto-

rially add the measured winds to the Earth-relative velocity of the KAPPA program as

they were in the CSA-RADFAST program, convert the drag acceleration to drag force,

and attain another drag-coefficient variation. This variation is shown in figure 10 with

CSA-RADFAST R4 and reference 1 drag curves. The basic shape of the KAPPA curve

is similar to the others, but its drag rise occurs at a higher Mach number.
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Figure 8.- Drag results obtained by the application of the

CSA-RADFAST method to models of the test series
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ANALYSIS OF RESULTS

In attempting to give a physical explanation for what caused the errors in CSA-

RADFAST results, three possible error sources may be immediately identified: (1) the

data reduction equations, (2) the smoothing techniques, and (3) the radar measurements.

A six-degree-of-freedom trajectory program (ref. 5) with a radar subroutine was used

to generate radar data. In addition to the four quantities (p,'PrterpD) usually obtained

from actual radar tracks, the radar subroutine also yields /r and 0 r. The main pro-

gram simultaneously computes the total aerodynamic force coefficient CT, the compo-

nents of which it is actually using internally in computing the trajectory. It should be

remembered that for small angles of attack, CT z CD. The output of this generated

case was designated GEN 1. In order to verify the data-reduction equations, the first

derivatives (0, 4 r, and Br) of GEN 1 were numerically differentiated to yield p, 4 r'
and 0 r. These nine quantities (the three just obtained and the six from GEN 1) were then

used as input to a RADFAST program modified to accept them directly. This checkout

case was designated GEN 2 and its output, CT versus M, is shown compared with the

CT versus M of GEN 1 in figure 11(a). It can be seen that there is extremely good

agreement.

The next step taken to help gain an understanding of the problem was to use just the

four quantities p, 4 r' 0 r, and PD) from GEN 1 and to treat them exactly in the

same manner that actual radar data (which, in fact, is comprised of only these four

quantities) is treated. In accordance with the procedures described in the section enti-

tled "Analytical Methods" these generated radar data were smoothed using the CSA/CRT

technique. Its output, the coefficients to the cubic equations, were used as input to

RADFAST where they were evaluated and used to compute a CT versus M curve.

This output is designated as GEN 3 and is shown compared with CT versus M of

GEN 1 in figure 11(b). It can now be seen that while some degradation has occurred the

agreement between the curves is still good.

Actual radar flight data has several things which could affect the accuracy of the

reduced CD: the basic calibration of each measurement (bias, linearity, etc.), the

sampling rate (Is it high enough to define all frequencies of interest?), and noise (white,
black, signal-to-noise ratio, etc.). For the purpose of this study, only the effect of a

fixed sampling rate and white noise with a standard deviation comparable to that found on

the Wallops FPQ-6 radar is examined. First, the effect of the fixed sampling rate alone

is studied and then the effect of a combination of sampling rate and noise is investigated.

The six-degree-of-freedom trajectory program has a computing interval which is

controlled internally by an error-estimation criteria. In effect, the generated radar data

turns out to have a variable sampling rate. However, since the variable computing
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(b) Checkout case of the CSA/CRT technique.

Figure 11.- Results of a study to identify the factor most responsible for
the flight results.
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(d) Effect on the data reduction of a combination of fixed,

data-sampling rate and white noise.

Figure 11.- Concluded.
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(sampling) interval is generally smaller than the fixed sampled interval of the radar, it

is a simple matter by interpolation to produce a new set of data with equal intervals.

Again, using the procedures of the section "Analytical Methods" another CT versus M

curve, designated GEN 4, is achieved and is compared with that of GEN 1 in figure 11(c).

Since the agreement is still good, it appears that a fixed data-sampling rate has a small

effect on the data reduction.

White noise is random in nature, has a Gaussian (normal) distribution with a mean

of zero. Quasiwhite noise was generated by a FORTRAN IV subroutine (GETRAN) with a

standard deviation comparable to that found on actual radar data and algebraically added

to the generated radar data of GEN 1. The following table presents the estimated stand-

ard deviation found on the Wallops FPQ-6 radar for these flights:

p, m . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . .. . 0.9144

4 r' ,deg ........ .. ...... . ... .. ....... 1.123x10 - 3

0 r, deg . .. . .. . . . . . .. ... . . . . . . . . . . . .. 1.123 x 10 - 3

PD' m/sec .............................. 0.2253

By interpolation, a new set of noisy data with equal intervals was generated. And finally,

once again using the data-reduction procedures, another CT versus M curve desig-

nated GEN 5, is computed and compared with the CT versus M curve of GEN 1 in

figure 11(d). Now it is possible to see a degradation in the results comparable to that

attained when using actual radar data.

Thus, in spite of employing advanced meteorological measurement techniques,

optimizing the trajectory, and updating both the data reduction equations and the filtering

procedures, the precise definition of the drag-rise Mach number from radar data alone

is not possible because of the inadequacy of the cubic spline approximation technique to

handle the noise inherently found on the Wallops tracking radars.

CONCLUDING REMARKS

An investigation was conducted of new techniques used to determine the complete

transonic drag characteristics of a series of free-flight drop-test models using, for the

most part, radar-tracking data only. This work was done to improve the results of that

which is typically a back-up mode to the accelerometer technique used in free-flight drag

studies. In this effort, exact kinematic equations tailored to enhance smoothing proce-

dures were formulated. Preflight trajectory design optimized the contribution of the data

known to be most accurate. The latest meteorological measurement systems were

employed. Analytical filtering techniques supplemented by visual displays which permit
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on-the-spot engineering judgment to be exercised in the postflight analysis of the data

were used. The results of this exploration were compared with those obtained by a more

direct, accelerometer approach using onboard, instrument data. The comparison indi-

cated that the accelerometer drag curve was approximated by the radar-data-alone drag

curve. A small amplitude perturbation on the latter curve, however, precluded a pre-

cise determination of its drag rise. On the other hand, the radar-data-alone approach

has merit as a backup method, for the drag rise could be estimated. In an attempt to

define physically which factor caused the above results, an analytical study using gener-

ated radar data was made. In this study it was found that the filtering techniques

employed were not capable of accounting for radar noise. When the generated data were

degraded by white noise comparable to that inherently found on the Wallops FPQ-6 radar,

the results were essentially the same as when using real radar data.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., July 11, 1974.
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APPENDIX A

-HAND-CALCULATION DATA-REDUCTION METHOD

The most significant equations of the method used in the past for determining the

variation of drag coefficient with Mach number from principally radar data took the form:

Drag force along the flight path:

D= - + g sin E, (Al)

Earth-relative velocity:

VE = 2 + (r cos Or),] + p/2 (A2)

Free-stream velocity:

Vo = VE+ Vw cos (Ey- w)cos YE,p (A3)

Drag coefficient:

CD D (A4)

These equations were formulated based on the following assumptions:

(1) Ballistic flight vehicles would fly at small angles of attack and consequently all

aerodynamic force would be drag force.

(2) Other than the drag force, the only force acting along the flight path would be a

component of the model weight. The acceleration proportional to the algebraic sum of

the above forces is the scalar magnitude of the velocity-vector rate of change.

(3) The Earth is considered flat and nonrotating due to the close proximity of the

flight vehicle to the radar and the shortness of flight duration.

The first assumption is of utmost importance and is examined in some detail in

appendix C. The second assumption forms the basis for equation (Al) which sums the

forces along the radar flight path (the Earth-relative velocity vector). Drag acts along

the free-stream velocity vector; however, at the test speeds of interest and the low actual

wind velocities, these two velocity vectors are almost coincident. The first part of the

third assumption is quite appropriate. The Earth could be considered flat for flights of

interest here. The second part of the third assumption, however, is erroneous. While
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APPENDIX A - Continued

the duration of the flights was short (on the order of 10 sec for the helium-gun flight tests),

the Coriolis forces which arise from tracking a free-flight body using a fixed radar on a

rotating Earth act on the flight model the entire time, no matter how short, and conse-

quently influence the force coefficients which are being sought. For low drag models the

Coriolis forces can be significant. In the original helium-gun test setup (see fig. Al) the

models were launched directly away from the Doppler radar set and usually into or with

the surface winds. The models were launched with low elevation angles and quite often

reached an altitude no greater than 610 m. In many cases the models were flying more

or less horizontally in the region of interest. Thus, the free-stream velocity could, for

the most part, be obtained merely by adding or subtracting, depending on its direction,

the actual wind speed. In equation form,

V = VE ±V (AS)

The sign would be positive for a headwind and negative for a tailwind. Since the line of

sight from the Doppler radar set was, for all practical purposes, tangent to the model

flight path throughout the test region, it was also possible to consider the Earth-relative

velocity to be composed entirely of the velocity obtained from the Doppler set (VE =D)
Furthermore, the rate of change of this Doppler velocity was the dVE /dt used in

equation (Al). In some of the helium-gun flights and many of the rocket-propelled

flights, these special flight conditions were not possible and more complete expressions

had to be employed. The velocity equation was modified to include the transverse compo-

nents of motion as well as the radial one (see eq. (A2)). Correction factors were applied

to equation (A5) to account for wind which were other than headwinds or tailwinds and for

the cases where models were not flying horizontally (see eq. (A3)). The second assump-

tion, however, where only quantities acting along the flight path are considered, was

maintained so that equation (A5) was modified only in such a manner as to consider the

component of the actual wind parallel to the flight path. An even more complete expres-

sion would have been to vectorially add the winds to the Earth-relative velocity.

The free use of equation (A5) has been responsible for the erroneous practice by

some analysts of using the time-differentiated free-stream velocity dVo/dt in

equation (Al). This error is not immediately detectable because with a constant wind

velocity and a near constant flight altitude, dV,/dt is equal to dVE/dt. However, while

the wind may be constant at a given altitude, it does usually change with altitude. If the

flight vehicle is changing altitude and if the time-differentiated free-stream velocity is

used, an acceleration is introduced which is equal to the product of dVw/dh and dh/dt,

where the former is the change in wind velocity with altitude and the latter is the change

in altitude of the flight vehicle with time. This can be shown in equation form by differ-

entiating equation (A5) as
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APPENDIX A - Continued

Doppler radar
Region of interest

Launch

(a) View of vertical line-of-sight plane of Doppler radar.

Remote positional radar

SLaunch

Doppler radar Surface wind

(b) Overhead view.

Figure Al.- Schematic of the launch model typically used in the past.
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APPENDIX A - Continued

dV0 dVE dV

dt dt dt

where it can be seen that

dVw_ dVw dh

dt dh dt

Obviously, in the flight-test cases of constant altitude the dVw/dt term vanishes. For

the other cases dVw/dt does exist but is an acceleration that has nothing to do with the

external forces acting on the flight vehicle.

Management and Reduction of Data to Coefficient Form

The hand-calculation method was aimed directly toward determining the variation

of drag with Mach number. For instance, it computes only enough trajectory parameters

to correlate the meteorological quantities with the aerodynamic forces. The method is

presented in a step-by-step manner as follows:

(1) Plot the raw radar data (p,kror,D) versus time (t), hand fair the plots, and

read smooth values of same

(2) Compute altitude (h), horizontal range (R), north-south component of horizontal

range (x), and the east-west component of horizontal range (y) using smooth

values of p, Vr' and 0r

h = p sin 0r (A6)

R = p cos 0r (A7)

x = R cos 4 'r (AS)

y = R sin 1kr (A9)

(3) Plot h versus R, hand fair the plot, and read slopes from the faired plot to

obtain the flight-path angle in the vertical plane (E, p)

E,p= tan- 1 Ah (A10)

(4) Plot x versus y, hand fair the plot, and read slopes from the faired plot to

obtain the flight-path angle in the horizontal plane (YE y)
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APPENDIX A - Concluded

tan- Iy (All)
YE, y Ax

(5) Plot smooth values of 4 r and 0r versus t, read slopes from the respective

plots to obtain ir and. r

4/ r
r t 

(A12)

AO
9 _- r
r at

(6) Plot 4r and Br versus t, hand fair the plots, read smooth values of Wr

and 0r, and convert the units of these quantities from deg/sec to rad/sec

(7) Compute the Earth-relative velocity with respect to the radar (VE) using

equation (A2) and the above converted lr and Or

(8) Plot VE versus t, hand fair the plot, and read slopes off the plot to obtain

the scalar magnitude of the velocity-vector rate of change (dVE/dt)

(9) Plot dVE/dt versus t, hand fair the plot, read smooth values of dVE/dt,

and compute the drag (D) using equation (Al)

(10) Using wind speed (V) and wind direction ('w) from the radiosonde data,

compute free-stream velocity (V -) using equation (A3)

(11) Using density (p) and speed of sound (Vc) from the radiosonde data, compute.

dynamic pressure (q_) and Mach number (M)

q, =  PV (A13)

M = V (A14)
Vc

(12) Finally, compute drag coefficient (CD) using equation (A4).
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APPENDIX B

EQUATIONS OF THE NEW DATA-REDUCTION METHOD (RADFAST)

This appendix presents the equations used herein to determine the kinematic motions

of a vehicle in free flight over a rotating oblate spheroid and the variation of drag coeffi-

cient with Mach number (RADFAST). These equations were formulated in such a manner

that each radar measurement and its applicable derivatives could be used directly in the

determination of the flight trajectory and the drag-coefficient variation with Mach number.

The purpose of this approach was to enable any one set of data to be smoothed independ-

ently of any other set. Thus, after the contribution of a particularly accurate set of data

as a component of a total desired quantity had been maximized by preflight trajectory

design, it would not then be degraded by being mixed with much less accurate data and

then smoothed. This approach also facilitates the introduction of the Doppler velocity

pD in the data reduction procedure.

In addition to updating the techniques for obtaining drag coefficients from radar data

alone, this program also updates the trajectory program and is compatible with the six-

degree-of-freedom trajectory program of reference 2 which is widely used by NASA

Langley Research Center, NASA Wallops Flight Center, and others.

The equations are written in a straightforward manner and are presented in an out-

line format as follows:

I. Determination of the constants associated with the tracking radar station (fig. B1 (a)).

A. Geocentric latitude of the sea-level subradar point pC (ORSL) is determined by

C ORSL) = tan-' tan G (ORSL (B)

where the geodetic latitude of the radar, OG(ORSL) - G(OR), and the polar and equa-

torial radii of the earth b and a, respectively, are known.

B. The geocentric radius vector of the sea-level subradar point RC(ORSL) is

found by

RC(ORSL) ab (B2)

L b2cos2 C(ORSL) + a 2 sin2 C(ORSL)

C. The geodetic radius vector of the sea-level subradar point RG (ORSL) is given

by
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APPENDIX B - Continued

Z', ZGN' ZRE OR

b 9 eO ORSL

;p Meridian plane
- of radar

OC (0 R)

Center C(OR S) G(OR) ="G(OR S
of Earth XREa

(a) Meridian plane view showing detailed geocentric and geodetic latitude

relationships of the radar station OR.

Figure B1.- Radar-station relationships with respect to Earth.
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sin qC (ORSL)
RG (ORSL) = RC ORSL) sin G ORSL) (B3)

D. The geodetic radius vector of the radar itself RG(OR) is found merely by adding

the height of the radar above sea level hR as follows:

RG(OR) = RG (ORSL) + hR (B4)

E. The geocentric radius vector of the radar itself RC(OR) is determined by

Rc(OR) = R C (ORL,,2 + + [RC (ORSL)]hRcos o (B5)

where

= G (ORsL) -( (C ORSL)

F. Finally, the geocentric latitude of the radar itself PC(OR) is calculated by

(OR) = sin- 1  (OR sin (OR) (B6)

II. Determination of the positional displacement of the flight vehicle with respect to

various axis systems (figs. Bl1(b) and Bl(c)).

A. The position of the flight-vehicle origin relative to the geodetic axis system of

the radar XOR(O)G is determined by

cos r cos 4r

XOR(O)G = Pcos @r sin (B7)

-p sin 0r

The XOR-axis is directed toward the North Pole and the ZOR-axis is .directed

downward. The symbols xOR, YOR' and zOR are components of XOR(O)G'

B. The position of the flight-vehicle origin relative to a rotating, Earth-centered,

radar axis system XRE(O)E is calculated by

rRC(OR)cos OC(OR)

X R()E = TIXOR(O)G + 0 (B8)

Rc(OR)sin (C(OR)
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-ZOR 0

OR XoR XOR

OR

OR,

ZOR

(b) Positional displacement of the flight vehicle 0 with respect to the

geodetic axis system of the radar station OR.

ZI, ZGN, ZRE o

XOR YOR

Sh
zMeridian plane

S Z of radar
¢C(ORSL)

• E XGN0 G(OR) E N

-NE A (OR) RE

X Earth's
equatorial

XGN plane

(c) Overall view showing the relationship of the radar axis system to the

Earth-centered axis systems.

Figure Bi.- Concluded.
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where [T 1j is a simple, time-invariant transformation matrix defined in equation (B48).

The XRE-axis lies in the equatorial plane and passes through the meridian of the radar.

The ZRE-axis passes through the North Pole. The symbols XRE YRE and zRE are

components of XRE(O)E.

C. The position of the flight-vehicle origin relative to a rotating, Earth-centered,

Greenwich axis system XGN(O)E is found by

XGN(O)E = [T2]XRE(O)E (B9)

where [T 2] is another simple, time-invariant transformation matrix in equation (B49).

The XGN-axis lies in the equatorial plane and passes through the meridian of Greenwich,

England. The ZGN-axis passes through the North Pole. The symbols XGN, YGN' and

ZGN are components of XGN(O)E'

D. Finally, the position of the flight-vehicle origin relative to a nonrotating, Earth-

centered, inertial axis system XI(O) I is determined by

XI(O)I = T3(t XGN(O)E (BI0)

where [T 3 (t)] is a time-dependent transformation matrix defined in equation (B50). The

Zl-axis also passes through the North Pole. The XI-axis lies in the equatorial plane and

is related to XE by a phase angle AE. The symbols xi, y, and zI are components

of XI(O) I .

Finally, AE is determined by

AE = AEO + WE(t - t) (B11)

where wE is the Earth's angular velocity and t is time.

III. Determination of the velocity of the flight vehicle with respect to various axis

systems.

A. Velocity of the flight-vehicle origin relative to the XOR(O)G-axis system can be

determined by

VOR(O)G = XOR(O)G = [M(t)] (B12)

LPD
where [M(t)] is a time-dependent matrix defined in equation (B51). The Doppler velocity

pD is introduced at this point.
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APPENDIX B - Continued

B. Velocity of the flight-vehicle origin relative to the XRE(O)E-axis system is

VRE(O)E = :RE(O)E = T 1kOR(O)G (813)

C. Velocity of the flight-vehicle origin relative to the XGN(O)E - axis system is

VGN(O)E = XGN(O)E = [T 2 RE(O)E (B14)

D. Velocity of the flight-vehicle origin relative to the Xi(O)i-axis system is

V(O), = X(Oj = 3(t)]XGN(O)E + [3(t)}XGN()E (B15)

Note that V1 (O)I is generally referred to as the inertial velocity of the body with
respect to the inertial axis system.

IV. Determination of the acceleration of the flight vehicle with respect to various axis
systems.

A. Acceleration of the flight-vehicle origin relative to the XOR(O)G-axis system is

AOR(O)G= VOR(O)G= XOR(O)G= II (t I+M(t) r (B16)

B. Acceleration of the flight-vehicle origin relative to the XRE(O)E-axis system is

ARE(O)E = VRE(O)E = XRE(O)E= [l]OR(O)G (Bl7)

C. Acceleration of the flight-vehicle origin relative to the XGN(O)E-axis system is

AGN(O)E = VGN(O)E= XtGN(O)E = [T2 RE(O)E (B18)

D. Acceleration of the flight vehicle origin relative to the XI(O)i-axis system is

A (0) = V1(O) = X1 (O) = Lt3(t) XGN(O)E + 2 3t]XGN(O)E + [T3(t)]GN(O)E (B19)

V. Determination of the flight-trajectory positions and orientations (fig. B2).
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ZI ZGN ZRE Meridian plane
of flight vehicle ,
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" SL

C(0) 0C

Earth C (OsL) G(OSL ) = G(0 ) =  G
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(a) Meridian plane view showing detailed geocentric and geodetic latitude

relationships of the flight vehicle O.
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ZGG
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AG I

Earth's
I X equatorial

GN plane

(b) Overall view showing the relationship of the flight-vehicle axis system to

the Earth-centered axis systems.

Figure B2.- Flight-vehicle relationships with respect to Earth.
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A. Geocentric latitude of the flight vehicle, (C, is

C = tan- I  2) (B20)

I + yI)

where x1 , yI, and zI are components of XI(O)1 .

B. Longitude of the flight vehicle, XC = XG = X, is

S= tan-- 1  AE (B21)

C. Geocentric radius vector of the flight vehicle, RC(0), is

Rc(O0) = 2+ y + z2 (B22)

D. Geodetic latitude of the flight vehicle, PG, is

Ia' (a sin C1 (B23)
G = tan 3 cos B23)

where 113 is an auxiliary function computed by starting with 10 = 1 and iterating until

P13 is determined by the expression

a 2 - b 2

= b + ) (B24)
n a RC(O)os2 

C + (n-1)2sin2
C

E. Geocentric latitude of the sea level, subflight vehicle point, OC (OsL) is

C(OSL) = tan - I  2 tan G (B25)
a2

F. Geocentric radius vector of the sea level, subflight vehicle point, RC (OSL), is

RC (OSL) ab (B26)
L 2cos2 C(OSL) + a 2 sin2 C(OSL)

G. Geodetic radius vector of the sea level, subflight vehicle point, RG(OSL), is

RG(OSL) = RC(OS sin C (OSL) (B27)
sin (OsL)

H. Finally, the altitude above sea level h is determined by
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z - RG(OSL) (B28)
sin OG

when sin PG 0 and by

h = RC(O) - a (B29)

when sin OG = 0.

The geodetic axis system of the flight vehicle X(O)G may now be defined. The

XG-axis is directed north, the YG-axis is directed east, and the ZG-axis is directed

down along the geodetic radius vector of the flight vehicle.

VI. Determination of flight-trajectory velocities (fig. B3).

A. Inertial velocity of the flight vehicle with respect to its geodetic axis system is

V (O)G = TG 2 V (0) (B1330)

where [TG2I is a time-dependent transformation matrix defined in equation (B52).

B. Velocity relative to the Earth of the flight vehicle with respect to its geodetic

axis system is

VE(O)G = VI(O)G- KE ROj cos C (B31)0 )
The magnitude of Earth-relative velocity VE is

VE = VE(O)GI (B32)

The flight-path angles associated with this velocity are

tan-1 -VE(O)kG (B33)
E,p tan{ VE () E (B(33)

in the vertical plane and

[VE (O)jG7E,y = tan- V 0 "G (B34)

in the horizontal plane.

C. Velocity relative to the free stream of the flight vehicle with respect to its geo-

detic axis system is
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VE E V,

0
XG

S(9Y.
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- Horizontal
_ plane
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Figure B3.- Earth-relative and free-stream velocity vector orientation of the flight

vehicle with respect to its geodetic axis system.
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Vo(O)G = VE(O)G - WE(O)G (B35)

where WE(O)G is the wind velocity relative to Earth with respect to the geodetic axis

system of the flight vehicle and where WE is the magnitude of WE(O)G.

The magnitude of the free-stream velocity V, is

V, = I V(O)GI (B36)

The flight-path angles associated with this velocity are

- V "(o)k

y = tan-i G (B37)
V (0) 2 +V (0) 2

in the vertical plane and

y = tan-1 (O)jG (B38)O,y V (o)iG

in the horizontal plane.

VII. Gravitational acceleration at the flight-vehicle origin given in various axis systems.

A. The gravitational acceleration at the flight-vehicle origin in the geocentric axis

system of the flight vehicle is defined as

-GT

GI(O)c = (B39)

G R
where

GT= AlR 4- 2A2 R j sin2 C - 3]sin 2C (B40)

and

GR = AO[ A 4 3 sin2  1R0-- 1 s C -

+ A2  ()] (35 sin4 C - 30 sin2  + 3) (B41)
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and AO,A1,A2 are oblate Earth gravity constants and

A0 = 9.798141 m/sec 2

Al = 0.016050 m/sec 2

A2 = 0.0000148 m/sec 2

B. The gravitational acceleration at the flight-vehicle origin in the inertial axis

system is

GI(O)I = TC2IG(O)C (B42)

where TC21 is a time-deijendent transformation matrix defined in equation (B53).

VIII. Determination of drag coefficient CD versus Mach number M.

A. The total aerodynamic force F (O)I is calculated using Newton's law as

follows:

F A(O)I = mAi(O)i - GI(O) (B43)

where m is the mass of the flight vehicle.

B. Introducing measured values of free-stream density p, and free-stream speed

of sound Vc, the total aerodynamic force coefficient CT is

F A()
C =F )1  (B44)

T  qOoS

where S is the reference area and the dynamic pressure q, is

2 
2qo = ~poV 2  (B45)

and Mach number M is

M = V" (B46)
Vc

C. Finally, assuming very small angles of attack during the data period (77 0),

CD CT (B47)
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IX. Matrices.

-sin (G(OR) 0 -cos OG(OR)

T 0 1 0 (B48)

cos OG(OR) 0 -sin PG(OR)

cos XR -sin 0R  I
[T2] = sin R cos R 0 (B49)

0 0 1

cos AE -sin AE 0

T3(t = sin AE cos A E 0 (B50)

0 0 1

xORzOR xOR

2OR 2 2 P
XOR YOR

M( xOR YOROR YOR (B51)

xOR OR

0 x2 + 2 OR
S-xOR YOR p

where xOR'YORzOR are components of XOR(O) G and p 2OR + R + zOR

-sin G cos (AE + X) -sin (AE + X) -os cos (A E + X)

G2 I1 = -sin 0G sin(AE + I) cos(AE + x) -cos G sin (AE + X) (B52)

cos (G 0 -sin jG
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Similarly,

-sin C coS(E + ) -sin(AE + ) -cos cos(AE +

Tc21 = -sin (C sin( AE + x) cos(AE + X) -cos ( C sin( AE + X) (B53)

cos (PC 0 -sin OC

The transpose of either TG2 I1 or TC2 1 is denoted by a tilde.
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APPENDIX C

STUDIES TO DETERMINE ANGLE-OF-ATTACK EFFECTS

One assumption used in the past concerning angles of attack is still applicable to the

updated techniques presented herein. This assumption says that a stable axisymmetric

flight vehicle will fly at small angles of attack, and consequently, all aerodynamic force

will be drag force. A preflight study was made to determine if this assumption was

valid. Three areas where angle-of-attack effects could occur were investigated: (1) in the

presence of gusts and winds, (2) following tipoff from the launch aircraft, and (3) encoun-

tering pitch-roll resonance phenomena.

In order to evaluate the effects of gusts and winds on the angle of attack, reference 7

was studied to understand the nature of winds. This reference stated that outside of the

Earth's atmospheric boundary layer (above approximately 1830 m), in the absence of any

frontal or local storm activity, and within time periods of up to as long as an hour, winds

are steady and uniform and have no vertical components. However, there are wind

shears that, when penetrated by aircraft or missiles, appear to an observer in the air-

craft to be gusts as one would think of them on the surface of the Earth. But, in fact,

there would be virtually no gusts in the flight regime of interest. In order to study the

response of the flight vehicle to the penetration of wind shears, a six-degree-of-freedom

computer simulation was conducted. Worst-probable (30r) wind-shear gradients

- 0.05 m/se were numerically superimposed on a statistical mean wind for
(Ah m
Wallops Flight Center. (See fig. Cl.) Also shown are vehicle altitude and angle-of-

attack response time histories. These indicate that the vehicle weathercocks into the

free-stream velocity vector and reaches a total angle of attack no greater than 0.450

Therefore, the effects of "gusts" and wind upon the accuracy of the Mach number and

drag coefficient are small. Since the six-degree-of-freedom simulation shows that the

model reaches a small total angle of attack (0.450) while penetrating 3a wind shears, the

assumption that the model will fly a zero-lift trajectory is reinforced.

Again using a six-degree-of-freedom program, a short study showed that tipoff of

as much as 120 initial angle of attack would damp to acceptable values by the time the

flight vehicle had reached the test region.

Another study using measured values of fin tip deflection and best engineering

estimates of center-of-gravity offset were used in six-degree-of-freedom simulations to

check for possible roll-resonance problems. None were found in the simulations and

none were seriously expected in flight, for each model was mass balanced.
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APPENDIX C - Concluded
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Figure Cl.- Determination of angle-of-attack effects.
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